If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1800=1/2(5)t^2
We move all terms to the left:
1800-(1/2(5)t^2)=0
Domain of the equation: 25t^2)!=0We get rid of parentheses
t!=0/1
t!=0
t∈R
-1/25t^2+1800=0
We multiply all the terms by the denominator
1800*25t^2-1=0
Wy multiply elements
45000t^2-1=0
a = 45000; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·45000·(-1)
Δ = 180000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180000}=\sqrt{90000*2}=\sqrt{90000}*\sqrt{2}=300\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-300\sqrt{2}}{2*45000}=\frac{0-300\sqrt{2}}{90000} =-\frac{300\sqrt{2}}{90000} =-\frac{\sqrt{2}}{300} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+300\sqrt{2}}{2*45000}=\frac{0+300\sqrt{2}}{90000} =\frac{300\sqrt{2}}{90000} =\frac{\sqrt{2}}{300} $
| -60=4x+8 | | x+.5x=3000 | | 10/3=40/n | | 17p=16p | | 3y-23/4(12y-4)=-2 | | 32n–4=10 | | 4/1.8=3/x | | 2=b/10-1322 | | 7x+34=5x-59 | | 2(y-4)=8y+3 | | C=2d+1/3d-1 | | -28=-4-6a | | 9x+18=12x+14 | | 125m-75m+38,400=40,000-150m | | 15x+0.05=30x | | (x^2/8)-(x/40)=3 | | 12x+5=15x-28 | | 15x-28=12x+5 | | X^2-2•4x-15^2=0 | | 8j=-2j+18 | | C=(2x^2)-10X+50 | | 8x-22=2x+9 | | 7(t-4=7 | | 3(3x+7)=3x+5 | | 6x+6=8x-2(x-3) | | 6(q+7)=48 | | 2(4+m=18 | | 361=8x+4x+4x+2x+x+x | | 7×+19=-2x+55 | | 32511.99=2^n | | 2x+12(15-2.5x)=4x-5(5-x) | | 2x/3+5x=75 |